ISSN 2581-6217

World Journal of Pharmaceutical Science & Technology

Journal homepage: www.wjpst.com

Original Research Article

DEVELOPMENT AND VALIDATION OF A RP HPLC METHOD FOR THE SIMULTANEOUS ANALYSIS OF LOPINAVIR AND RITONAVIR IN TABLETS DOSAGE FORM.

Shubham Mhaske *1, Suhas Siddheshwar², Mahesh Kolhe³

- Department Of Quality Assurance Techniques, Pravara Rural College Of Pharmacy, Pravaranagar, Tal-Rahta, Dist- Ahmednagar 413736, India
- Department Of Quality Assurance Techniques, Pravara Rural College Of Pharmacy, Pravaranagar, Tal-Rahta, Dist- Ahmednagar 413736, India
- Department Of Quality Assurance Techniques, Pravara Rural College Of Pharmacy, Pravaranagar, Tal-Rahta, Dist- Ahmednagar 413736, India

Address for correspondence:

Shubham Mhaske, Department Of Quality Assurance Techniques, Pravara Rural College Of Pharmacy, Pravaranagar, Tal- Rahta, Dist- Ahmednagar 413736, India

E-mail- mhaskeshubham663@gmail.com

Received: 19-03-2021, Revised: 30-04-2021, Accepted: 01-05-2021

ABSTRACT

The objective of this review study is to analyze simple, accurate, precise and rapid stability indicating HPLC method for simultaneous determination of Lopinavir and Ritonavir in combined dosage forms.

A validated stability indicating reversed phase high-performance liquid chromatographic method was developed for the quantitative determination of two antiviral drugs viz. lopinavir (LPV) and ritonavir (RTV) on Phenomenex – Luna, C18 (250 x 4.6 mm i.d., 5μ) column using mobile phase composition of Buffer: Acetonitrile (55: 45 % V/V) at a flow rate of 1.5 ml/min.

Quantification was achieved with ultraviolet detection at 255nm. The retention time obtained for ritonavir was at 10.92 min and for lopinavir was at 13.23 min. This method has been validated and shown to be specific, sensitive, precise, linear, accurate, rugged, robust and fast.

KEYWORDS: HPLC, method Validation, Lopinavir, ritonavir, antiviral.

INTRODUCTION

Lopinavir is with chemicals named as (2S)-N-[(2S, 4S, 5S)-5-[2-(2,6-dimethylphenoxy)acetamido]-4hydroxy-1,6-diphenylhexan-2-yl]3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide. It's freely soluble in alcohol and grain alcohol, soluble in isopropyl alcohol and much insoluble in water. Lopinavir inhibits HIV proteolytic enzyme, inflicting the protein incapable of process the polyprotein precursor. This ends up in the assembly of non-infectious and immature HIV particles.

Ritonavir is with chemicals named as one,3-thiazol-5-ylmethylN-[(2S,3S,5S)-3-hydroxy-5-[(2S)-3-methyl-2-)carbamoyl]amino}butanamido]1,6-diphenylhexan-2yl]carbamate. It's freely soluble in alcohol (methanol and ethanol), soluble in isopropyl alcohol and much insoluble in water. Ritonavir, a selection competitive reversible inhibitor of HIV proteolytic enzyme, interferes with the formation of essential proteins and enzymes. At that time the formation of immature and non-infectious viruses follows. It additionally interferes with the assembly of infectious HIV and limits any infectious unfold of the virus. (1, 2)

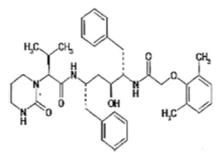


Fig1: structure of lopinavir

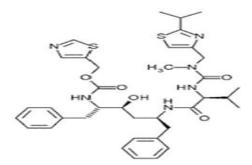


Fig2: structure of Retonavir

Lopinavir and PI (LPV/r) could be a fastened combination for human immunological disorder virus (HIV) proteolytic enzyme inhibitors (PIs). The counseled dose of LPV/r is 400/100 mg taken doubly daily with food, as a part of a mixture medical care with different antiretroviral (ARV) agents. The target of this review

study is to research easy, accurate, precise and fast stability indicating HPLC methodology for synchronous determination of Lopinavir and PI in combined dose forms. (3, 4)

Drug profile

Parameter s	Lopinavir	Ritonavir	
Molecular	C37H48N4O5	C37H48N6O5S2	
formula			
Molecular	628.8008	720.944	
weight			
Solubility	Acetonitrile, ethanol, DMSO, and	Acetonitrile, ethanol, DMSO, and dimethyl	
	dimethyl formamide (DMF).	formamide (DMF).	
Mechanis	Lopinavir is an inhibitor of the HIV-1	Ritonavic inhibits the HIV viral proteinase	
m of action	protease enzyme.7 Its design is based	enzyme that normally cleaves the structural	
	on the "peptidomimetic" principle,	and replicative proteins that arise from major	
	wherein the molecule contains a	HIV genes, such as gag and pol. Gag	
	hydroxyethylene scaffold which	encodes proteins involved in the core and the	
	mimics the normal peptide linkage	nucleocapsid, while pol encodes the the HIV	
	(cleaved by HIV protease) but which	reverse transcriptase, ribonuclease H,	
	itself cannot be cleaved.5 By	integrase, and protease . Ritonavir prevents	
	preventing HIV-1 protease activity,	the cleavage of the gag-pol polyprotein,	
	and thus the proteolysis of the Gag	which results in noninfectious, immature	
	polyprotein, lopinavir results in the	viral particles. Ritonavir is a potent inhibitor	
	production of immature, non-	of cytochrome P450 CYP3A4 isoenzyme	
	infectious viral particles.	present both in the intestinal tract and liver	
Pharmaco	• When administered alone,	• The absolute bioavailability of	
kinetic	lopinavir has exceptionally low	ritonavir has not been determined.7	
	oral bioavailability (~25%) -	following oral administration, peak	
	for this reason, it is exclusively	concentrations are reached after	
	co-administered with ritonavir,	approximately 2 hours and 4 hours	
	which dramatically improves	(Tmax) after dosing under fasting and	
	bioavailability.	non-fasting conditions, respectively.	
	• The volume of distribution of	• The estimated volume of distribution	
	lopinavir following oral	of ritonavir is 0.41 ± 0.25 L/kg.	
	administration is	• Ritonavir is highly protein-bound in	
	approximately 16.9 L.	plasma (~98-99%).	

•	Lopinavir is >98% protein-	•	The isopropylthiazole oxidation
	bound in plasma.		metabolite (M-2) is the major
•	Lopinavir undergoes extensive		metabolite in low plasma
	oxidative metabolism, almost		concentrations and retains similar
	exclusively via hepatic CYP3A		antiviral activity to unchanged
	isozymes.		ritonavir. The cytochrome P450
•	The elimination half-life of		enzymes CYP3A and CYP2D6 are
	lopinavir is 6.9 ± 2.2 hours.		the enzymes primarily involved in the
•	The estimated apparent		metabolism of ritonavir.
	clearance following oral	•	Ritonavir is primarily eliminated in
	administration is		the feces and urine.
	approximately 6-7 L/h.	•	The approximate half-life of ritonavir
			is 3-5 hours.7
		•	The apparent oral clearance at steady-
			state is 8.8 ± 3.2 L/h. Renal clearance
			is minimal and estimated to be <0.1
			L/h.

Table 1: drug profile

MATERIALS AND METHOD

- Drug samples: Lopinavir (Assay: 99.80%) and Ritonavir (Assay: 99.65%) were used as standards
- Tablets used: Brand: EMELTRA; Lopinavir 200mg and Ritonavir 50mg
- Chemicals and solvents used:

All the solvents and reagents used were HPLC grade. Acetonitrile, Ammonium acetate, Acetic acid, and Methanol and Distilled water is used in experiment.

- Instrumentation :
 - i. HPLC system: Shimadzu Isocratic HPLC system with following configurations, LC-10AT Vp series, Isocratic solvent delivery system (pump).
 - ii. Injection system: Rheodyne 7725i injector with 20 µl loop.
 - iii. Software: Spinchrome data station.
 - iv. Analytical column: Phenomenex Luna, C18 (250 x 4.6 mm i.d., 5µ).
 - v. Detector: UV-Visible SPD 10AVp series detector.

• Preparation of mobile phase:

- Preparation of buffer solution: Weighed & transferred about 0.77g of Ammonium acetate into a beaker containing 1000ml of Water and dissolved completely. The pH of the Solution was adjusted to 6.5±0.05 with glacial acetic acid and then filtered through 0.45µm membrane filter
- Preparation of Mobile Phase: Mobile phase is prepared by mixing 550 ml of buffer and 450 ml of acetonitrile
- iii. Mobile-Phase Ratio: Buffer: Acetonitrile (55: 45 % V/V).

• Method for the estimation

With the optimized chromatographic conditions, a steady baseline was recorded. After stabilization of the baseline for about 30 minutes, successive aliquots of the standard solution of the same concentration were injected and chromatogram was recorded until the reproducibility of the peak areas was satisfactory. This procedure was repeated using the sample solution so that duplicate injection of the sample solution was bracketed by injection of the standard solution

• VALIDATION OF METHOD

The developed method was validated for as per ICH Q2 (R1) guidelines for various parameters such as accuracy, precision, linearity, robustness, limit of detection (LOD), limit of quantitation (LOQ), and stability.

i. Accuracy

The accuracy of the RP-HPLC method was evaluated by selecting three different concentrations lower quantitation limit (LQC), medium quantitation limit (MQC), and higher quantitation limit (HQC). In each concentration, a minimum of six injections were given and the amount of the drugs present, percentage recovery, and related standard deviation were calculated. The percentage recovery was calculated using the formula

X = (Y- C/m) x 100 Where, X is % recovery Y is area of test sample occurred C is y intersept M is the slope

ii. Precision

The precision of the developed method was studied by performing interday and intraday variations. The precision of the developed method was studied by performing interday and intraday variations in which three replicate solution of standard and test are run in system at different time. The amount of each drug, percentage content, standard deviation, and percentage relative standard deviation were calculated

iii. Linearity and range

The six series of standard solutions were selected for assessing linearity range. The calibration curve was plotted using peak area versus concentration of the standard solution and the regression equations were calculated. The least squares method was used to calculate the slope, intercept and correlation coefficient

iv. LOD and LOQ

The LOD and LOQ of RP, PP, and IP were determined by injecting progressively lower concentrations of the standard solutions into the HPLC column using the optimized chromatographic conditions in accordance with 3.3 s/n and 10 s/n criteria, respectively, where, s/n indicates signal-to-noise ratio.

v. Robustness

For the demonstrating the robustness of method, slight variations in the optimized conditions were done and the standard solution was injected.

Flow rate ± 1 ml/min.

Wavelength $\pm 1 nm$

RESULT AND DISCUSSION

• Method development

Chromatographic conditions

	Parameters	Specification	
1	HPLC	Shimadzu Isocratic HPLC system	
2	Software	Spinchrome data station	
3	Column	C18 column,	
4	Mobile Phase	Buffer: Acetonitrile (55: 45 % V/V).	
5	Diluents	Mobile phase	
6	Detection Wavelength	255nm	
7	Flow rate	1.5mL/min	
8	Run Time	20 min	
9	Volume of injection	20µl	

Table 2: optimized chromatographic condition lopinavir and ritonavir

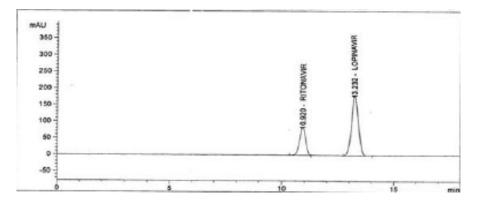


Fig 3: chromatogram for lopinavir and ritonavir

Determination of Lopinavir and Ritonavir in dosage forms by the developed RP-HPLC method was carried out. The standard and sample solutions were prepared and the chromatograms were recorded.

Validation of Method:

• System suitability test :

The suitability of the system was evaluated by the values obtained for Theoretical plate, Resolution and tailing factor of the chromatogram of standard drugs. The selectivity of the method was revealed by the repeated injection of mobile phase and no interference was found.

Sr. no	o Retention time		Theoretical plate		Asymmetric factor	
	Lopinavir	Ritonavir	Lopinavir	Ritonavir	Lopinavir	Ritonavir
1	13.23min	10.92 min	7599	6782	1.012	1.001

Table 3: system suitability test for lopinavir and ritonavir

• Accuracy :

The accuracy of the method was determined by %recovery experiments. The recovery studies were carried out by preparing 6 individual samples with same procedure from the formulation and injecting. The percentage recovery was calculated. From the data obtained, added recoveries of standard drugs were found to be accurate.

The % recovery range for lopinavir and ritonavir range is found between 99.88-99.90 and 99.86-99.99.

• Precision :

The system and method precision of the method were demonstrated by inter day, intraday and repeatability of injection studies. All the solutions were injected into the chromatographic system. Precision is calculated in terms of systemic and method precision. The systemic and method precision

Sr. no	System precision		method precision	
	Lopinavir	Ritonavir	Lopinavir	Ritonavir
1	0.06	0.20	0.062	0.53

Table 4: precision for lopinavir and ritonavir

The peak area and percentage relative standard deviation were calculated. From the data obtained, the developed HPLC method was found to be precise.

• Linearity :

The standard drug solutions of varying concentrations ranging from 20% to 120% of the targeted level of the assay concentration (i.e.) 5 μ g/ml to 30 μ g/ml of Ritonavir and 20 μ g/ml to 120 μ g/ml of Lopinavir, were examined by the proposed method. The response factor, slope, intercept, correlation co-efficient and Residual sum of squares values were calculated.

The equation was found to be

For lopinavir

$$Y = 44.77x + 134.3$$

For ritonavir

$$Y = 6.004x + 66.80$$

Coefficient of correlation for both drugs was found to be 0.999.

• Limit of detection (LOD) and limit of quantitation (LOQ)

For this study, three replicates of sample at lowest concentrations were measured and quantified. The equations are LOD= $3.3 \times \sigma/S$ and LOQ= $10 \times \sigma/S$ where, ' σ ' is standard deviation of lowest three concentrations and 'S' is slope of linearity equation. The LOD and LOQ is find out in terms of signal to noise ratio

		Lopinavir	Ritonavir
Limit of Detection	Signal noise ratio should be more than 3:1	0.153	0.043
Limit of Quantitation Signal noise rat should be more t 10:1		0.462	0.132

Table 5: LOD and LOQ for lopinavir and ritonavir

• Robustness :

The robustness of the method was studied by carrying out experiments by changing. The response factors for these changed chromatographic parameters were almost same as that of the fixed chromatographic parameters and hence developed method is said to be robust

Summary	of	results:
----------------	----	----------

Parameter	Observation		Limit
	Lopinavir	Ritonavir	
Retention time	13.23 min	10.92 min	-
Theoretical plates	7599	6782	-
Asymmetric factor	1.012	1.001	-
Coefficient of correlation	0.999	0.999	Correlation coefficient NMT – 0.999
Accuracy (% recovery)	99.88-99.90	99.86-99.99	% Recovery range 98 –102 %
System precision	0.06	0.20	RSD NMT 2.0%
Method precision	0.062	0.53	RSD NMT 2.0%
LOD	0.153	0.043	Signal noise ratio should be more than 3:1
LOQ	0.462	0.132	Signal noise ratio should be more than 10:1

Table 6: Summary of results

CONCLUSION:

The developed HPLC method for the estimation of lopinavir and ritonavir was performed in mobile phase Buffer: Acetonitrile (55: 45 % V/V). This method is successfully validated as per ICH guidelines. It is indicate that this newly developed method was found to be accurate, simple, precise, and reproducible. This method can be easily applied for quality control analysis in industry. The retention time of this method will significantly reduce the analysis time and cost.

REFERENCES

- Donato EM, Dias CL, Rossi RC, Valente RS, Froehlich PE, Bergold AM,: Simple HPLC method for the simultaneous estimation of Lopinavir and Ritonavir in Soft gelatin capsules. Journal of chromatographia, 63, 2000, 437-443.
- Masanam Jyothi Bindu, K.Narendra Kumar Reddy, G Himabindu: RP-HPLC method development and validation for simultaneous estimation of Lopinavir and Ritonavir in tablet dosage form: Indian Journal of Research in Pharmacy and Biotechnology Volume 5, Issue 1, 2017: Page 77
- 3. US Department of Health and Human Services Guidelines for use of antiretroviral agents in HIV-1 infected adults and adolescents. http:// www.aidsinfo.nih.gov

- E. M. Donato&, C. L. Dias, R. C. Rossi, R. S. Valente, P. E. Fro["]ehlich, A. M. Bergold: LC Method for Studies on the Stability of Lopinavir and Ritonavir in Soft Gelatin Capsules: Chromatographia 2006, 63, May (No. 9/10): page no 437
- Manuela Ehrhardt, Marion Mock, Haefeli W.E, Mikus G and Burhenne J, Developed LC/MS/MS method for the simultaneous estimation of Lopinavir and Ritonavir in human plasma. Journal of chromatography, 850(2), 2007, 249-258.
- Poirier JM, Robiduo P, Jallion P, Developed simple HPLC method for the simultaneous estimation of Amprenavir, Indinavir, Saquinavir, Nelfinavir, Atazanivir, Lopinavir and Ritonavir in human plasma, Therapeutic Drug Monitoring, 27(2), 2005, 186-192.
- Rita C Estrela, Ribeiro FS, Seixas BV, Kurtz GS, Developed HPLC method for the simultaneous estimation of Lopinavir and Ritonavir in human blood, semen, and saliva, Willey interscience, 22(5), 2008, 657-664.
- Shivanand N. Hiremath, PhD * and Charushila H. Bhirud, PhD: Development and validation of a stability indicating HPLC method for the simultaneous analysis of lopinavir and ritonavir in fixeddose combination tablets: Journal of Taibah University Medical Sciences (2015) 10(3), 271-277
- K. Chiranjeevi* and K. P. Channabasavaraj: development and validation of rp-hplc method for quantitative estimation of ritonavir in bulk and pharmaceutical dosage forms: ijpsr (2011), vol. 2, issue 3, 596
- 10. FDA Approved Drug Products: Kaletra (lopinavir/ritonavir) for oral use.
- 11. Health Canada Product Monograph: Kaletra (lopinavir/ritonavir) for oral use
- Hull MW, Montaner JS: Ritonavir-boosted protease inhibitors in HIV therapy. Ann Med. 2011 Aug;
 43(5):375-88. doi: 10.3109/07853890.2011.572905. Epub 2011 Apr 18.
- 13. FDA Approved Drug Products: NORVIR (ritonavir) Capsules, Soft Gelatin for Oral use